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Abstract

We study locales in the context of point-free topology. After the
basic notions of locales and localic maps are introduced, we show that
there is an adjunction between the category of locales and the cate-
gory of topological spaces. Furthermore, we show that this adjunction
restricts to the equivalence of categories of spatial locales and sober
spaces. In the last section, we briefly discuss the structure of sublo-
cales of a locale.

1 Introduction

A great deal of information about a topological space is carried by its lattice
of open sets. For instance, the notions of compactness, continuous maps and
that of sheaves on a topological space refer only to open subsets without
ever mentioning points of a space. The question then arises: exactly how
much information does the lattice of opens contain about a space? This is
the question we are aiming to answer in this project report.

Our approach to point-free topology is via the study of locales. A locale
is a complete lattice whose finite meets distribute over arbitrary joins, in
the same vein that finite intersections of open sets distribute over arbitrary
unions of open sets. Thus a locale is an algebraic ‘model’ for a lattice of opens
of a topological space. However, while for every topological space its lattice of

1This report is an outcome of an individual reading project I did as a part of MSc
Logic degree at the ILLC, University of Amsterdam. The project was supervised by Nick
Bezhanishvili.
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opens is a locale, not every locale corresponds to a lattice of opens. Localic
topology may thus be seen as a generalisation of classical topology, which
allows one to study more exotic space-like structures. One must nonetheless
keep in mind that in localic topology, in contrast to its classical counterpart,
we are only allowed to talk about properties expressible using the generalised
open sets, that is, elements of a locale. While we will reconstruct the notion
of a point (Definition 20), this is a derived notion, and there is no guarantee
that a locale has points to begin with.

A philosophical motivation for studying pointless locales comes from the
fact that they are closer to our intuitive or practical notion of space. The idea
here is that any notion of space encountered in ‘real life’ does not (at least a
priori) consist of points, but rather of ‘places’, parts of space that somehow
glue together to form the entirety of the space. It is these ‘realistic places
of non-trivial extent’ ([5, Preface]) that localic topology takes as primitives,
and this viewpoint will be our conceptual guideline throughout the report.
A strong motivating example of this phenomenon may be found in quantum
mechanics, where it might not make sense to assign a definite location to
a particle, while it still occupies a certain region in space, albeit with no
sharp boundaries. This idea has been developed in Heunen, Landsman and
Spitters [1].

A more mathematical motivation comes from the, somewhat surprising,
fact that some central results that rely on choice in classical topology are
not just true in localic topology, but are also constructive. Examples of such
results are the Stone-Čech compactification for locales and the fact that a
product of compact locales is compact ([3, p. 48], [5, Preface]), at least when
the locales are coherent (Tychonoff’s theorem in classical topology). Here,
however, we will not get this far. The reader is referred to Johnstone ([3]
and [2]) for an overview of the subject from this point of view.

The report is structured as follows. In Section 2 we cover some results
and definitions that will be used throughout the paper. We assume some
familiarity with lattices and category theory, especially the theory of adjoint
functors. The single most important result in this section is the Adjoint
functor theorem for posets 7, which we prove in detail, as more or less ev-
erything else builds on that. Section 3 discusses the category Loc and other
basic notions concerning locales, including construction of locales from topo-
logical spaces. In Section 4 we discuss different incarnations of the notion
of a point of a locale, as well as answer the question posed in the beginning
about the lattice of opens. We do the latter by constructing an adjunction
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between the categories of locales and topological spaces. We further show
that this adjunction restricts to an equivalence of categories of spatial locales
(Definition 18) and sober spaces (Definition 4). Thus as long as the space is
sober, its lattice of opens in fact carries all information about the space, in
the sense that we may reconstruct the space (up to an isomorphism) from
its lattice of opens. Section 5 defines sublocales (vaguely corresponding to
subspaces) and shows how the notion of a closed and open subspace carries
over to sublocales.

The main source for this report are the first three chapters of Frames and
Locales by Picado and Pultr [5].

Remark 1. We make a convention for the entire report that every topological
space is T0 (Kolmogorov). Thus, for example, when we speak of the category
of topological spaces Top, what we really mean is the category of all T0

spaces.

Remark 2. We think of posets and lattices as categories in the standard
way, with joins being the coproduct and meets the products. This is a useful
perspective especially when defining the localic maps and working with the
Heyting operation →, which we think of as the right adjoint to the product
functor:

a ∧ − a a→ −.

We will exploit this perspective without further notice.

2 Preliminary notions

We introduce some aspects of category and lattice theories needed for the
presentation.

2.1 Lattices and sober spaces

Definition 3 (Meet-irreducible element). An element m ∈ L in a lattice
is called meet-irreducible if m 6= 1 (if the top element exists) and whenever
a ∧ b ≤ m, then either a ≤ m or b ≤ m.

An example of a class of meet-irreducible elements with a nice description
is given by topological spaces. Let X be a topological space and denote its
lattice of open sets by Ω(X). Then for each x ∈ X, the open set X \ {x}
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is a meet-irreducible element of Ω(X). Indeed, if U, V ∈ Ω(X) are such
that U ∩ V ⊆ X \ {x}, then x ∈ {x} ⊆ U c ∪ V c, so that either x ∈ U c or
x ∈ V c. Suppose without loss of generality that x ∈ U c, so that {x} ⊆ U c,
or equivalently, U ⊆ X \ {x}, as required.

If each meet-irreducible element is of this form, the space X may be
recovered up to an isomorphism from its lattice of open sets (as we will do
in Section 4). This motivates making this into a definition.

Definition 4 (Sober space). A topological space X is said to be sober if all
meet-irreducible elements in the lattice of open sets Ω(X) are of the form
X \ {x} for some x ∈ X.

Sober spaces may be equivalently characterised by completely prime fil-
ters; we defer the statement and proof of this characterisation to Section 4
(Corollary 25).

Remark 5. Sobriety is not a separation axiom. While any T2 (Hausdorff)
space is sober, sobriety is independent from T1. Indeed, suppose a space
X is Hausdorff, and let U ∈ Ω(X) be meet-irreducible. Since U 6= X we
have U c 6= ∅, so that we may suppose towards a contradiction that we have
x, y ∈ U c with x 6= y. Using T2, let Vx and Vy be disjoint opens containing x
and y, respectively. Then Vx∩Vy = ∅ ⊆ U , whence either Vx ⊆ U or Vy ⊆ U ,
which is a contradiction. Thus x = y for any elements in the complement,
so that U c = {x} for some x ∈ X, whence U = X \ {x}.

Now consider the space S := {x, y}, where the opens are ∅, S and {x}
(the Sierpiński space). It is clearly not T1, as {x} is not closed. However,
S is sober, as ∅ = S \ {x} and {x} = S \ {y} (and these are the only
meet-irreducibles in Ω(S)). Thus sobriety does not imply T1.

Conversely, consider the space N, where a set U ⊆ N is open iff U = ∅ or
U c is finite. Then each singleton is closed, so that the space is T1. However,
it is not sober. Indeed, ∅ is meet-irreducible: if U ∩ V = ∅ such that both
U and V are non-empty, then U c∪V c = N, which is a contradiction, as both
U c and V c are finite, whence we must have that either U = ∅ or V = ∅.
Certainly ∅ is not of the form N \ {n} for any n ∈ N. Thus T1 does not
imply sobriety.

2.2 Adjoints and posets

The following is a general result in category theory, the proof may be found
e.g. in Appendix 1 of Leinster [4].
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Theorem 6 (General adjoint functor theorem). Let F : C → D be a functor.
If F has a left adjoint, then it preserves limits. Moreover, in case C is
complete and locally small, and for each D ∈ D the comma category (D ⇒ F )
has a weakly initial set, F preserves limits if and only if it has a left adjoint.

The following result follows by specialising Theorem 6 to posets and notic-
ing that the locally smallness and weak initiality conditions in the ‘moreover’
-part trivialise for small categories. However, we give a direct, order-theoretic
proof of this.

Theorem 7 (Adjoint functor theorem for posets). Let P and Q be posets,
and f : P → Q a functor (order-preserving map). If f has a left adjoint,
then it preserves limits (infima). Moreover, in case P is complete, f preserves
infima if and only if it has a left adjoint.

Proof. First suppose f has a left adjoint g : Q → P , so that for all x ∈ Q
and y ∈ P we have

g(x) ≤ y iff x ≤ f(y). (8)

Let A ⊆ P be a subset such that
∧
A exists. We claim that f (

∧
A) is the

infimum of
fA := {f(a) : a ∈ A}.

Indeed, observe that

x ≤ f
(∧

A
)

iff g(x) ≤
∧

A

iff g(x) ≤ a∀a ∈ A
iff x ≤ f(a)∀a ∈ A,

whence f (
∧
A) =

∧
(fA).

Now suppose P is complete and f preserves infima. We define a map
g : Q→ P by

x 7→
∧
{z ∈ P : x ≤ f(z)}.

Observe that this assignment is indeed functorial (i.e. g is order-preserving).
We claim that g is the sought-after left adjoint, that is, equation (8) holds.
First suppose g(x) ≤ y for some x ∈ Q and y ∈ P . Since f is order-
preserving, we get fg(x) ≤ f(y), and since f preserves infima we have

fg(x) =
∧
{f(z) : z ∈ P and x ≤ f(z)} ≥ x,

5



as x is a lower bound of the set we take the infimum of. Hence we have shown
x ≤ f(y). Conversely, suppose x ≤ f(y), so that g(x) ≤ gf(y). But

gf(y) =
∧
{z ∈ P : f(y) ≤ f(z)} ≤ y,

as the infimum is in particular a lower bound. Thus g(x) ≤ y, concluding
the proof.

The following is the dual statement of Theorem 7, to which we will also
refer as the Adjoint functor theorem for posets. Note that we exploit the
fact that a poset is complete if and only if it is cocomplete.

Corollary 9. Let Q and P be posets, and g : Q → P a functor (order-
preserving map). If g has a right adjoint, then it preserves colimits (suprema).
Moreover, in case Q is complete, g preserves suprema if and only if it has a
right adjoint.

The following is a straightforward exercise in basic category theory.

Proposition 10. Let C and D be categories and

Λ : C � D : Γ

an adjunction (left adjoint on the left) with unit η and counit ε. Let C0 be
the full subcategory of C containing those objects C ∈ C for which ηC is an
isomorphism, and dually, let D0 contain those D ∈ D for which εD is an
isomorphism. Then the adjunction (Λ,Γ, η, ε) restricts to an equivalence of
C0 and D0.

Albeit the proof of this being straightforward, this result has profound
consequences in particular cases, of which we shall see one in Section 4.

3 Locales

We define locales, the central objects of interest in the lattice-based approach
to topology. We proceed to complete these to a category Loc by defining
localic maps. We provide some motivation for the definitions and see what
they correspond to in standard topology.
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Definition 11 (Locale). A locale L is a complete lattice whose finite meets
distribute over arbitrary joins. More precisely, we have(∨

A
)
∧ b =

∨
{a ∧ b : a ∈ A} (12)

for all b ∈ L and all subsets A of L.

Note that the distributivity condition (12) models the situation in the
lattice of open sets Ω(X) of a topological space X, where finite meets (inter-
sections) distribute over joins (unions). Thus for any topological space X,
the poset Ω(X) is a locale whose lattice operations are given by unions and
interior of intersections.

Proposition 13. A lattice L is a locale if and only if it is a complete Heyting
algebra.

Proof. Observe that equation (12) says exactly that each product functor
b∧− preserves joins. Under the assumption of completeness, by the Adjoint
functor theorem for posets (specifically Corollary 9), this occurs if and only if
the product functor has a right adjoint, precisely what is needed for a lattice
to be a Heyting algebra.

Remark 14. From (the dual of) the proof of the Adjoint functor theorem
for posets 7 we obtain that the Heyting operation induced by a locale is given
by

b→ c =
∨
{a : a ∧ b ≤ c}.

Definition 15 (Localic map). An order-preserving map (functor) f : L→M
between locales L and M is localic if it preserves all meets and its left adjoint
f ∗ : M → L preserves finite meets.

We denote the category of locales and localic maps by Loc.

Remark 16. Note that a localic map is not required to preserve the Heyting
implication, and indeed, in general, it will not.

The following is a useful characterisation of isomorphisms in Loc.

Proposition 17. Let f : L→ K be a localic map, denote its left adjoint by
f ∗. Then the following are equivalent:
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(1) f is an isomorphism,

(2) f is a bijection of sets1,

(3) f ∗ = f−1,

(4) f a f ∗.

Proof. ((1)) =⇒ ((2)) is immediate.
((2)) =⇒ ((3)): Let f−1 be the inverse of f (in Set). Since for all

y ∈ K we have f ∗(y) ≤ f ∗(y), we get y ≤ ff ∗(y). On the other hand,
y = ff−1(y), whence f ∗(y) ≤ f−1(y). Since f is order-preserving, we obtain
that ff ∗(y) ≤ y, so that in fact ff ∗(y) = y. Thus we also get for a ∈ L that

a = f−1f(a) = f−1ff ∗f(a) = f ∗f(a),

whence by uniqueness of inverses f ∗ = f−1.
((3)) =⇒ ((4)): We immediately have f(a) ≤ y iff a ≤ f ∗(y) as f ∗ is an

order-preserving inverse of f .
((4)) =⇒ ((1)): If f a f ∗, then f ∗ is localic, as its left adjoint preserves

(finite) meets. Since we also have f ∗ a f , from the two adjoint equations we
obtain that ff ∗ = idY and f ∗f = idX .

Locales isomorphic to the lattice of opens of some topological space have
a special status in the category of locales, as will be discussed in Section 4.
For now, we make a definition.

Definition 18 (Spatial locale). A locale is called spatial if it is isomorphic
to the locale Ω(X) for some topological space X.

For a more internal characterisation of spatial locales, see Corollary 34.
Note that any continuous map between topological spaces f : X → Y

induces the left adjoint of a localic map f−1 : Ω(Y ) → Ω(X) (the preim-
age), as preimages preserve intersections. It is a left adjoint since preimages
preserve unions (joins), so that by the Adjoint functor theorem for posets
(Corollary 9) it has a right adjoint f∗ : Ω(X)→ Ω(Y ) given by

U 7→
⋃
{V ∈ Ω(Y ) : f−1(V ) ⊆ U},

1Precisely, Uf : UL → UK is an isomorphism in Set, where U : Loc → Set is the
forgetful functor.
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which by the same theorem is guaranteed to preserve all meets and is thus
a localic map. Note that the condition f−1(V ) ⊆ U may be rewritten as
f(U c) ⊆ V c. Thus using involutiveness of complements we observe that the
effect of f∗ may be written as

f∗(U) =
(
f(U c)

)c
.

This is in fact the motivating example for the definition of a localic map.
Furthermore, note that we have defined a functor:

Ω : Top→ Loc

X 7→ Ω(X)(
X

f−→ Y
)
7→
(

Ω(X)
f∗−→ Ω(Y )

)
.

It will be the subject of Section 4 to define a right adjoint of this functor and
explore the properties of the adjunction.

Remark 19. The category dual to Loc is called the category of frames and
its morphisms are referred to as frame homomorphisms. While this dual
perspective proves useful in certain contexts, in this report we will work
exclusively with locales for the sake of conciseness.

4 Points and the spectrum adjunction

In Section 3 we defined a functor Ω : Top→ Loc turning topological spaces
into locales. The natural question to ask is whether a locale gives a rise to a
space. The answer is indeed yes, and our first aim is to construct a functor
Σ : Loc → Top. To this end, we will need the notion of a point capturing
the intuitive idea of smaller and smaller ‘approximations’ of an infinitely tiny
region of space (point), or a sequence of ‘measurements’ which are getting
more and more precise. We then proceed to show that Σ is in fact the right
adjoint of Ω, and that the adjunction restricts to an equivalence of categories
between sober spaces and spatial locales.

First, we observe that the category Loc has a terminal object 2 := {0 <
1} (the two-element Boolean algebra). For suppose L is a locale; we define
f : L→ 2 by

x 7→

{
1 if x = 1

0 otherwise,
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and f ∗ : 2 → L by f ∗(1) = 1 and f ∗(0) = 0. It is now straightforward that
f ∗ preserves (finite) meets and we have f ∗ a f . Thus f is a localic map.
For uniqueness, suppose we have another such adjunction g∗ a g where g∗

preserves finite meets. But then g∗(1) = 1 and g∗(0) = 0 since left adjoints
preserve joins, whence g∗ = f ∗, and by uniqueness of adjoints g = f .

Therefore, following the usual notion of an ‘element’ of an object in a
category, we define:

Definition 20 (Point). A point of a locale L is a localic map 2→ L.

In fact we have a functor

P : Loc→ Set

L 7→ P (L) := Loc(2, L)(
L

f−→ K
)
7→
(
P (L)

f◦−−−→ P (K)
)
.

sending each locale to the set of its points (this is just the covariant rep-
resentable functor). It turns out that for any locale L, there is a natu-
ral one-to-one correspondence between points, completely prime filters and
meet-irreducible elements of L. We next make this precise.

Definition 21 (Completely prime filter). A proper filter F ⊆ L in a complete
lattice L is completely prime if whenever we have A ⊆ L such that

∨
A ∈ F ,

then there is an a ∈ A such that a ∈ F .

The following two propositions are now immediate from the fact that the
left adjoint f ∗ of a localic map preserves joins and finite meets.

Proposition 22. Let f : L → K be a localic map and F ⊆ L a completely
prime filter in L. Then

(f ∗)−1F = {k ∈ K : f ∗(k) ∈ F}

is a completely prime filter in K.

Proposition 23. Localic maps send meet-irreducible elements to meet-irreducible
elements.
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Given a locale L, let us denote the sets of its completely prime filters and
meet-irreducible elements by C(L) and M(L), respectively. Using the above
propositions, we may extend C and M to functors as follows.

C : Loc→ Set

L 7→ C(L)(
L

f−→ K
)
7→
(
C(L)

(f∗)−1

−−−−→ C(K)

)
,

where (f ∗)−1 sends each completely prime filter F to its preimage (f ∗)−1F .

M : Loc→ Set

L 7→M(L)(
L

f−→ K
)
7→
(
M(L)

f |M(L)−−−−→M(K)

)
.

We now have the following characterisation of points.

Theorem 24. Let L be a locale. There is a natural bijection between any
two of the following:

• points of L,

• completely prime filters in L,

• meet-irreducible elements of L.

More precisely, the functors P , C and M are naturally isomorphic.

Proof. We construct natural isomorphisms η : P → C and µ : C →M .
Define ηL : Loc(2, L)→ C(L) by

p 7→ (p∗)−1(1),

which is well-defined by Proposition 22. To see that this defines a natural
transformation, given a localic map f : L → K, we need to show that the
diagram

Loc(2, L) Loc(2, K)
f◦− //

C(L)

ηL

��
C(K)

(f∗)−1
//
��
ηK
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commutes. But this amounts to showing

((fp)∗)−1(1) = (f ∗)−1((p∗)−1(1))

for each p ∈ Loc(2, L), which is immediate from (fp)∗ = p∗f ∗ and (p∗f ∗)−1 =
(f ∗)−1(p∗)−1.

To see that each ηL is a bijection, define η̃L : C(L)→ Loc(2, L) by

F 7→ p,

where p : 2 → L is the right adjoint to p∗ : L → 2 defined by p∗(x) = 1 iff
x ∈ F . We now have

η̃LηL(p) = η̃L((p∗)−1) = p,

ηLη̃L(F ) = F.

Since η̃L is a pointwise inverse to a natural transformation, it is itself natural,
whence we conclude that ηL is a natural isomorphism.

Next, define µL : C(L)→M(L) by

F 7→
∨
{x ∈ L : x /∈ F},

which is well-defined, as each µL(F ) is meet irreducible. To see this, first
observe that µL(F ) /∈ F since F is completely prime. Then, indeed, if
a ∧ b ≤ µL(F ), we have either a /∈ F or b /∈ F (if both are in F , then
so is the meet hence also µL(F )), without loss of generality say a /∈ F , but
then a ≤ µL(F ), as required. For naturality, given a localic map f : L→ K,
we need to show that

C(L) C(K)
(f∗)−1

//

M(L)

µL

��
M(K)

f |M(L)

//
��
µK

commutes. This amounts to showing that for each F ∈ C(L) we have

f(µL(F )) = f
(∨
{x ∈ L : x /∈ F}

)
=
∨
{y ∈ K : y /∈ (f ∗)−1F}.

Thus suppose y /∈ (f ∗)−1F , that is, f ∗(y) /∈ F . But then

f ∗(y) ≤
∨
{x ∈ L : x /∈ F},
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which occurs if and only if y ≤ f(µL(F )). Thus f(µL(F )) is an upper bound
for the set {y ∈ K : y /∈ (f ∗)−1F}. To see that it is the least upper bound,
let u ∈ K be an upper bound, in other words for all y ∈ K we have

f ∗(y) /∈ F =⇒ y ≤ u.

Using the fact that f ∗ is a left adjoint to f , we get that

f ∗f(µL(F )) ≤ µL(F ),

so that f ∗f(µL(F )) /∈ F (as otherwise µL(F ) ∈ F ). But then, by assumption,
f(µL(F )) ≤ u, so that f(µL(F )) is indeed the least upper bound, and we
have the desired equality.

To see that each µL is a bijection, define µ̃L : M(L)→ C(L) by

m 7→ {x ∈ L : x � m}.

Observe that µ̃L(m) is indeed a filter: it is proper as 0 ≤ m, it is a filter since
m is meet-irreducible, and it is completely prime by properties of joins. We
now have:

µ̃LµL(F ) =
{
x ∈ L : x �

∨
{y ∈ L : y /∈ F}

}
.

Observe that x /∈ F iff x ≤
∨
{y ∈ L : y /∈ F} iff x /∈ µ̃LµL(F ), whence

µ̃LµL(F ) = F . On the other hand,

µLµ̃L(m) =
∨
{x ∈ L : x /∈ {y ∈ L : y � m}}

=
∨
{x ∈ L : x ≤ m}

= m,

so that µ̃L is indeed a pointwise inverse to µL, so that we indeed have a
natural isomorphism, as before.

We may now characterise sober spaces (Definition 4) in terms of com-
pletely prime filters. To this end, observe that for any topological space X
and any x ∈ X, the set {U ∈ Ω(X) : x ∈ U} is a completely prime filter in
Ω(X) (it is clearly a filter and complete primeness follows from the properties
of unions). In fact we have the following.

Corollary 25. A topological space X is sober if and only if all completely
prime filters on Ω(X) are of the form {U ∈ Ω(X) : x ∈ U} for some x ∈ X.

13



Proof. First suppose X is sober, and let F ⊆ Ω(X) be a completely prime
filter. Then, by the proof of the above theorem, we have that µΩX(F ) is meet-
irreducible, so that by assumption there is an x ∈ X such that µΩX(F ) =
X \ {x}. Applying µ̃ΩX on both sides we obtain

F = {U ∈ Ω(X) : U * X \ {x}}.

Observe that X \ {x} = int{x}c =
⋃
{V ∈ Ω(X) : x /∈ V }, so that U *⋃

{V ∈ Ω(X) : x /∈ V } iff x ∈ U , whence

F = {U ∈ Ω(X) : x ∈ U}.

Conversely, suppose each completely prime filter on Ω(X) is of the form
given in the statement of the corollary, and letM ∈ Ω(X) be meet-irreducible.
As before, µ̃ΩX(M) is a completely prime filter, so that there is an x ∈ X
with µ̃ΩX(M) = {U ∈ Ω(X) : x ∈ U}. Applying µΩX on both sides yields

M =
⋃
{U ∈ Ω(X) : x /∈ U} = int{x}c = X \ {x}.

We thus have three perspectives on points. The analogy between our
original definition of a point and points of a topological space is clear. If we
think of points as in the beginning of this section, namely, as areas of space
diminishing in size, we are thinking of a point as a filter. In this context,
a useful way to think about elements of a filter is as pieces of evidence
(e.g. outcomes of a measurement) which tell us with variable precision where
the ‘real value’ lies. This is one of the motivations behind studying point-free
topology, as there may be situations in which the ‘real value’ is inaccessible or
does not exist to begin with. Then the structure of a filter has an epistemic
interpretation: if x is a piece of evidence for the ideal point, then so is any
piece of evidence containing x; if x and y contain the ideal point, then so
does x∧y; zero (the inconclusive or empty evidence) is evidence for no point.
Complete primeness can be given the interpretation of consistency of parts:
if some pieces of evidence put together contain the ideal point, then one of
the pieces must contain it (so we exclude the situation in which the whole
contains the ideal point but none of the parts do). Natural bijection with
meet-irreducible elements is reminiscent of the fact that a point is determined
by its complement.
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A slight modification of the functor C turns it into a functor from Loc
to Top. We just have to topologise the set C(L) in such a way that (f ∗)−1

is continuous for any f : L→ K. Given a locale L and an element a ∈ L, we
define Σa as the collection of all completely prime filters containing a:

Σa := {F ∈ C(L) : a ∈ F}.

Observe that Σa ∩ Σb = Σa∧b and moreover Σ0 = ∅ and Σ1 = C(L) (we
require any filter to be non-empty). Thus the set τ(L) := {Σa : a ∈ L} forms
a basis for a topology on C(L). In fact, τ(L) is closed under unions: using
complete primeness of the filters it is straightforward to see that⋃

a∈A

Σa = Σ∨
A

for any subset A ⊆ L. Thus τ(L) defines a topology on C(L). Then, we have
the following.

Proposition 26. Let f : L→ K be a localic map. Then

(Cf)−1Σy = Σf∗(y)

for any y ∈ K.

Proof. For a completely prime filter F ⊆ L we have: F ∈ (Cf)−1Σy iff
(f ∗)−1F ∈ Σy iff y ∈ (f ∗)−1F iff f ∗(y) ∈ F iff F ∈ Σf∗(y).

It follows that Cf : C(L) → C(K) is a continuous map when C(L) and
C(K) are equipped with topologies τ(L) and τ(K). We thus define

Σ : Loc→ Top

L 7→ (C(L), τ(L))(
L

f−→ K
)
7→
(

Σ(L)
(f∗)−1

−−−−→ Σ(K)

)
,

where (C(L), τ(L)) denotes the topological space C(L) equipped with the
topology τ(L). Note that on the level of sets, Σ is identical to C, and the
only way it differs from it is that we equip the C(L) with a topology. To put
precisely, we have UΣ = C, where U : Top→ Set is the forgetful functor.
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Since completely prime filters of a locale are in a natural one-to-one cor-
respondence with points of the locale, we may think of Σ(L) as the set of
points of L together with the topology induced on it by L.

For each L ∈ Loc, we define a map

σL : ΩΣ(L)→ L

as the right adjoint to the map

σ∗L : L→ ΩΣ(L)

a 7→ Σa.

Since Σ∨
A =

⋃
a∈A Σa for all subsets A ⊆ L, we have that σ∗L preserves joins

and thus by the Adjoint functor theorem for posets it has a right adjoint
given by

σL(U) =
∨
{a ∈ L : Σa ⊆ U}.

Since Σ1 = C(L) and Σa∧b = Σa∩Σb, we have that σ∗L preserves finite meets,
so that σL is indeed a localic map.

Remark 27. Observe that σ∗L is surjective. Using the adjoint equation we
have that x ≤ σLσ

∗
L(x) and σ∗LσL(U) ≤ U for all x ∈ L and U ∈ ΩΣ(L),

from which it is immediate that

σ∗LσLσ
∗
L = σ∗L,

and thus by surjectivity of σ∗L we obtain σ∗LσL = idΩΣL. Thus every σL is
injective.

Proposition 28. The assignment

σ : ΩΣ→ idLoc,

whose components are given by σL, is a natural transformation.

Proof. We need to show that for any localic map f : L→ K, the diagram

ΩΣ(L) ΩΣ(K)
(Cf)∗ //

L

σL

��
K

f
//
��
σK

16



commutes.This amounts to showing that for all b ∈ L we have

f
(∨
{a ∈ L : Σa ⊆ Σb}

)
=
∨
{y ∈ K : Σy ⊆

⋃
{Σw : Σf∗(w) ⊆ Σb}}.

We first observe that for all y ∈ K,

Σy ⊆
⋃
{Σw : Σf∗(w) ⊆ Σb} iff Σf∗(y) ⊆ Σb.

Indeed, the right-to-left implication is immediate. Conversely, suppose

Σy ⊆
⋃
{Σw : Σf∗(w) ⊆ Σb}

and let F ∈ Σf∗(y) so that f ∗(y) ∈ F , or equivalently y ∈ (f ∗)−1F . By
Proposition 22, this is a completely prime filter, so that (f ∗)−1F ∈ Σy. By
assumption, there is a w ∈ K such that Σf∗(w) ⊆ Σb and (f ∗)−1F ∈ Σw.
The latter occurs precisely when F ∈ Σf∗(w), whence it follows that F ∈ Σ,
showing the left-to-right entailment.

Thus what we have to show simplifies to

f
(∨
{a ∈ L : Σa ⊆ Σb}

)
=
∨
{y ∈ K : Σf∗(y) ⊆ Σb}. (29)

Hence let y ∈ K be such that Σf∗(y) ⊆ Σb, so that

f ∗(y) ≤
∨
{a ∈ L : Σa ⊆ Σb} iff y ≤ f

(∨
{a ∈ L : Σa ⊆ Σb}

)
using the adjoint equation. Thus the left-hand side of (29) is an upper bound
for the set {y ∈ K : Σf∗(y) ⊆ Σb}. To see that it is the least upper bound,
let u ∈ K be an upper bound, so whenever Σf∗(y) ⊆ Σb, we have y ≤ u.
Using the fact that for any a ∈ L we have f ∗f(a) ≤ a, and that σ∗L is
order-preserving, we get that

Σf∗f(
∨
{a∈L:Σa⊆Σb}) ⊆ Σ∨

{a∈L:Σa⊆Σb}

=
⋃
{Σa : a ∈ L and Σa ⊆ Σb}

= Σb.

Then, by assumption, f (
∨
{a ∈ L : Σa ⊆ Σb}) ≤ u, so that the left-hand side

of (29) is indeed the supremum, proving the desired equality (29).
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Now we define a continuous map for each X ∈ Top

λX : X → ΣΩ(X)

x 7→ {U ∈ Ω(X) : x ∈ U}.

To see that it is indeed continuous, let U ⊆ X be open; we then have

x ∈ λ−1
X (ΣU) iff U ∈ {W ∈ Ω(X) : x ∈ W} iff x ∈ U,

so that λ−1
X (ΣU) = U .

Proposition 30. The assignment

λ : idTop → ΣΩ,

whose components are given by λL, is a natural transformation.

Proof. We need to show that for any continuous map f : X → Y , the diagram

X Y
f //

ΣΩ(X)

λX
��

ΣΩ(Y )
(f−1)−1

//
��
λY

commutes. This amount to showing that for each x ∈ X

λY (f(x)) = (f−1)−1λX(x),

which is straightforward; for given an open subset W ⊆ Y we have

W ∈ (f−1)−1λX(x) iff f−1W ∈ λX(x)

iff x ∈ f−1W

iff f(x) ∈ W
iff W ∈ λY (f(x)).

We are now ready to state and prove the main result of this section.

18



Theorem 31. The functors

Ω : Top� Loc : Σ

are adjoint (left adjoint on the left), with unit λ and counit σ.

Proof. For any X ∈ Top and L ∈ Loc, we need to show that the triangles

ΩX ΩΣΩX
ΩλX //

ΩX

idΩX

$$

σΩX

��

ΣL ΣΩΣL
λΣL //

ΣL

idΣL

$$

ΣσL

��

(32)

commute.
For the left triangle, let U ⊆ X be an open subset. We need to show that⋃

{V ∈ Ω(X) : ΣV ⊆ (λX)∗U} = U.

Note that it suffices to show that for any open V ⊆ X,

ΣV ⊆ (λX)∗U iff V ⊆ U,

which we now do. We have that

ΣV ⊆ (λX)∗U iff V ∈ F =⇒ F ∈
⋃
{ΣW : W ∈ Ω(X) and λ−1

X ΣW ⊆ U}

iff V ∈ F =⇒ ∃W ∈ Ω(X) s.t. F ∈ ΣW and λ−1
X ΣW ⊆ U

iff V ∈ F =⇒ ∃W ∈ Ω(X) s.t. W ∈ F and W ⊆ U

iff V ⊆ U,

where whenever we write V ∈ F , there is an implicit universal quantification
over F ∈ ΣΩ(X), which we omitted for the sake of clarity. For the third
equivalence we used the observation that λ−1

X ΣW = W made when proving
continuity of λX ; and for the last one the fact that {W ∈ Ω(X) : x ∈ W} is
a completely prime filter.

For the right triangle, we need to show that for any completely prime
filter F on L we have

(σ∗L)−1{Σa : a ∈ L and F ∈ Σa} = F.
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But the set of which we take the preimage on the left-hand side is equal to
{Σa : a ∈ F}; thus we have for all b ∈ L

b ∈ (σ∗L)−1{Σa : a ∈ F} iff Σb ∈ {Σa : a ∈ F} iff b ∈ F,

where the ‘only if’ part of the last equivalence follows by noting that if
Σb = Σa, then b ∈ F iff a ∈ F .

In the light of Proposition 10, it is natural to ask what are the categories
the above adjunction restricts to. We conclude this section by addressing
this question.

Proposition 33. The map σL : ΩΣ(L) → L is an isomorphism if and only
if L is a spatial locale.

Proof. If σL is an isomorphism, L is isomorphic to ΩΣ(L) and hence spatial.
For the converse, first observe that for any topological space, the map

σΩX is an isomorphism: it is injective by Remark 27, surjective by the left
triangle in (32), and hence an isomorphism by Proposition 17. Thus if there
is a topological space X and an isomorphism L

∼−→ Ω(X), then naturality of
σ together with the fact that σΩX is an isomorphism imply that so is σL.

In light of the above proposition, the following characterisation (making
no reference to topological spaces) of spatial locales becomes easy to see
(Johnstone [2, p. 43]).

Corollary 34. A locale L is spatial if and only if any elements a, b ∈ L with
a � b can be separated by a point (meaning there is a completely prime filter
containing one but not the other).

Proof. If L is spatial, then this is immediate, as for any (open) sets U and
V with U * V , there is an x ∈ U such that x /∈ V , so that {W : x ∈ W} is
the separating filter.

To show the converse, it suffices to see that σ∗L is injective (by Remark 27
and Proposition 17). Hence suppose Σa = Σb, so that a ∈ F iff b ∈ F for
all completely prime filters F . By assumption, this can only happen if a ≤ b
and b ≤ a, so that a = b, as required.

Proposition 35. The map λX : X → ΣΩ(X) is a homeomorphism if and
only if X is sober.
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Proof. We use the formulation of sobriety in Corollary 25.
If λX is an isomorphism and F ⊆ Ω(X) is a completely prime filter, then

{U ∈ Ω(X) : λ−1
X (F ) ∈ U} = λXλ

−1
X (F ) = F.

Conversely, if X is sober, then each element in ΣΩ(X) is of the form
{U ∈ Ω(X) : x ∈ U} for some x ∈ X. Moreover, such x is in fact unique,
since we are assuming the spaces to be T0. Thus λX is bijective. It thus
remains to show it is also an open map. Thus let U ⊆ X be open. We have

λX(U) = {{V ∈ Ω(X) : x ∈ V } : x ∈ U} = {F ∈ ΣΩ(X) : U ∈ F} = ΣU .

Let us denote the full subcategory of Loc consisting of spatial locales by
SpLoc and the full subcategory of Top containing the sober spaces by Sob.
As anticipated, we have the following result.

Theorem 36. The adjunction in Theorem 31 restricts to the equivalence of
categories

Sob ' SpLoc.

Proof. Apply Proposition 10 to propositions 33 and 35.

5 Sublocales

Here we define the appropriate notion of a sublocale and scratch the surface
of the structure of sublocales of a given locale. In particular, we shall see
that the collection of all sublocales of a locale form a colocale, and hence a
co-Heyting algebra.

Definition 37 (Sublocale). Let L be a locale. A subset S ⊆ L is a sublocale
of L if it is a locale in the induced order and the embedding map j : S ↪→ L
is localic.

Proposition 38. A subset S ⊆ L of a locale is a sublocale if and only if the
following conditions hold:

(S1) S is closed under meets in L,

(S2) for every s ∈ S and x ∈ L, we have x→ s ∈ S.
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Proof. First suppose S is a sublocale and let j : S ↪→ L be the embedding.
For (S1), let A ⊆ S. Then

∧
A = j

(∧
S

A

)
=
∧
S

A ∈ S

since j preserves meets. This implies that the Heyting implication in S
coincides with the Heyting implication in L. For (S2), let s ∈ S and x ∈ L.
Using (S1) we compute for any y ∈ L

y ≤ x→ s iff y ∧ x ≤ s

iff y ∧ x ≤ j(s)

iff j∗(y) ∧ j∗(x) ≤ s

iff j∗(y) ≤ j∗(x)→ s

iff y ≤ j∗(x)→ s,

whence we conclude x→ s = j∗(x)→ s ∈ S.
Conversely, suppose (S1) and (S2) hold. Thus given A ⊆ S, we have∧
A ∈ S, so that it is also the infimum of A in S. Thus S is a complete

lattice. Since S is closed under the Heyting implication, it is a complete
Heyting algebra and hence a locale by Proposition 13. It is now immediate
that the embedding j preserves meets, as those in S coincide with those in
L. It remains to show that its left adjoint j∗ : L→ S preserves finite meets.
First, for s ∈ S,

j∗(1) ≤ s iff 1 ≤ j(s) = s,

whence j∗(1) = 1. For a, b ∈ L and s ∈ S we compute

j∗(a ∧ b) ≤ s iff a ∧ b ≤ s

iff a ≤ b→ s

iff j∗(a) ≤ b→ s

iff b ≤ j∗(a)→ s

iff j∗(b) ≤ j∗(a)→ s

iff j∗(b) ∧ j∗(a) ≤ s,

where in the third and fifth equivalence we used (S2). Thus we conclude that
j∗(a ∧ b) = j∗(a) ∧ j∗(b), as required.
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Using the characterisation of sublocales in Proposition 38, we immediately
see that the top element of L is contained in any sublocale, {1} and L are
always a sublocales and any intersection of sublocales is itself a sublocale.
Thus for any locale L the poset of its sublocales S`(L) (ordered by inclusion)
is a complete lattice with bottom element {1}, top element L, and whose
meets are given by intersections. The joins are given by∨

S =
{∧

A : A ⊆
⋃

S
}
,

where S is a collection of sublocales (see Picado and Pultr [5, p. 28] for
details). In fact we have the following theorem, whose proof may be found
in Picado and Pultr [5, Theorem 3.2.1].

Theorem 39. For any lattice L, the poset of its sublocales S`(L) is a colocale,
that is, it is a complete lattice whose finite joins distribute over arbitrary
meets.

In any lattice D, the fact that finite joins distribute over arbitrary meets
may be expressed as the coproduct functors a∨− preserving meets, thus by
the Adjoint functor theorem for posets 7 it has a left adjoint − a satisfying

c a ≤ b iff c ≤ a ∨ b

for all a, b, c ∈ D. This is the co-Heyting implication exhibiting D as a co-
Heyting algebra2. For future reference, we define the co-Heyting negation of
a ∈ D by ¬a := 1  a, where 1 is the top element of D. Observe that we
have a ∨ ¬a = 1 for all a ∈ D, but in general we need not have a ∧ ¬a = 0.

By analogy with the topological spaces, we wish to talk about open and
closed sublocales. For the motivation behind these definition see Picado and
Pultr [5, p. 33].

Definition 40. Let L be a locale and a ∈ L. Then the open sublocale
associated with a is

o(a) := {a→ x : x ∈ L};

and the closed sublocale associated with a is

c(a) := ↑a.
2Note that the situation is dual to that of Proposition 13.
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It is straightforward to see that both open and closed sublocales associ-
ated with a are indeed sublocales. By considering the sublocales associated
with the top element, we get that both L and {1} are both open and closed.
Furthermore, by analogy with closed and open subspaces, we have the fol-
lowing.

Proposition 41. Let L be a locale. Then for any a ∈ L, the sublocales o(a)
and c(a) are complements of each other in S`(L).

Proof. First let x ∈ L. Using that in any Heyting algebra we have x =
(x ∨ a) ∧ (a → x), we observe that x ∈ c(a) ∨ o(a) since (x ∨ a) ∈ c(a) and
(a→ x) ∈ o(a). Thus L ⊆ c(a) ∨ o(a).

Next observe that y ∈ c(a) ∪ o(a) implies a ≤ y and y = a→ z for some
z ∈ L, so that a ≤ z, whence y = 1. Thus c(a) ∪ o(a) = {1}.

The open and closed sublocales behave in the expected way under meets
and joins.

Proposition 42. [5, Proposition 6.1.5] We have

o(a) ∩ o(b) = o(a ∧ b),
∨
i∈I

o(ai) = o

(∨
i∈I

ai

)
,

c(a) ∨ c(b) = c(a ∧ b),
⋂
i∈I

c(ai) = c

(∨
i∈I

ai

)
.

We conclude this section by defining closure and interior of sublocales.
This may be done in exactly the same way as for spaces: if S ⊆ L is a
sublocale, the interior of S is the largest open sublocale contained in S, and
the closure of S is the smallest closed sublocale containing S (which exist
since S`(L) is a complete lattice). We observe that for closure we in fact have
a simpler description: any closed sublocale containing S must also contain∧
S as an element, and consequently contains ↑ (

∧
S). On the other hand

↑(
∧
S) is closed and contains S, whence we conclude

S = ↑
(∧

S
)
.
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Interior does not admit such a nice description, however, we do have

intS =
∨
{o(x) ⊆ S : x ∈ L}

= o
(∨
{x ∈ L : o(x) ⊆ S}

)
=

{∧
x∈A

(x→ y) : y ∈ L

}
,

where A := {x ∈ L : ∀z ∈ L(x→ z ∈ S)}.
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